A Compact Finite Element Method for Elastic Bodies

نویسنده

  • Milton E. Rose
چکیده

A nonconforming finite element method is described for treating linear equilibrium problems, and a convergence proof showing second order accuracy is given. The close relationship to a related compact finite difference scheme due to Phillips and Rose [2] is examined. A condensation technique is shown to preserve the compactness property and suggests an approach to a certain type of homogenization. Research was supported by the National Aeronautics and Space Administration under NASA Contract Nos. NASI-17070 and NASI-17130 while the author was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

Evaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method

This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...

متن کامل

A New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation

In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...

متن کامل

Propagation of Crack in Linear Elastic Materials with Considering Crack Path Correction Factor

Modeling of crack propagation by a finite element method under mixed mode conditions is of prime importance in the fracture mechanics. This article describes an application of finite element method to the analysis of mixed mode crack growth in linear elastic fracture mechanics. Crack - growth process is simulated by an incremental crack-extension analysis based on the maximum principal stress c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008